5 research outputs found

    Role of middle-ear inertial component of bone conduction in chinchilla

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 53-55).Bone conduction describes the mechanisms that produce a hearing sensation when the skull bones are subjected to vibration. Multiple components and pathways have been suggested to contribute to total bone-conducted sound. They include outer-ear cartilaginous wall compression, middle-ear inertia, fluid inertia, cochlear capsule compression and soft-tissue conduction. Due to the complexity of the possible interactions within these components and pathways, the true stimulus to the inner ear is not fully understood nor has it been adequately quantified. In this thesis work, we examined the relationship between inner-ear sound pressures and its sensory response in addition to determining the relative significance between the outer, middle and inner ear mechanisms that are prominent in bone conduction hearing in chinchilla. Using both mechanical and physiological recording techniques, we measured cochlear responses in chinchilla before and after interruption of the middle-ear ossicular system in both air conduction (AC) and bone conduction (BC) stimulation. Our data suggest that differential intracochlear sound pressure is the driving source to the sensory response of the inner ear in AC and BC. Compared to those in AC, inner-ear sound pressure measurements in BC provide evidence of multiple mechanisms in BC process. After middle ear interruption, pressures in scala vestibuli Psv and scala tympani PST drop by as much as 40 dB in AC, but only decrease in Psv by 10 dB, with almost no change in PST in BC. The difference in the change of both Psv and PST in BC compared to AC suggest the main mechanisms that drive the inner ear response in BC are not derived from the outer ear or middle ear but the inner ear.by David Chhan.S.M

    Evidence of inner-ear mechanisms in bone conduction in chinchillas

    No full text
    Thesis: S.M., Harvard-MIT Program in Health Sciences and Technology, 2015.Cataloged from PDF version of thesis.Includes bibliographical references (pages 75-76).While much is known about the process of how airborne sound is conducted to the inner-ear via the outer ear and middle ear, so-called air conduction (AC), the mechanisms by which vibrations of the head and body, so-called bone conduction (BC), produce an auditory response are not well understood. It is clear that the inner ear is the sensory site of auditory stimulation by bone conduction, and that the resultant activation of the inner ear has many features in common with air-conduction stimulation; however, bone conduction is known to stimulate the inner ear through multiple pathways. The relative significance and frequency dependence of these different pathways have not been well defined. Our previous work on bone conduction in chinchillas suggested inner-ear mechanisms are the dominant sources in BC. This thesis builds upon the early work by investigating inner ear mechanisms with stapes fixation and ear canal occlusion. Results of stapes fixation show a decrease in scala vestibuli sound pressure Psv and little change in scala tympani sound pressure PST in bone conduction. Ear canal occlusion produces an increase in ear canal sound pressure PEC with a similar amount of increase in Psv, but almost no change in Pst. We attributed the differences in the change between Psv and PST in bone conduction after these manipulations to the existence of compressible cochlear structures or third window pathways, e.g. the cochlear aqueduct. While ear canal compression and middle ear inertia sources may contribute to the total bone conduction response (a 10 dB decrease in Psv after middle ear interruption and stapes fixation, and a 10 dB increase after ear canal occlusion), inner ear mechanisms are still the most significant sources in bone conduction because the changes in Psv and Pst in BC are much smaller than the changes in AC.by David Chhan.S.M

    Comparison of umbo velocity in air- and bone-conduction

    Full text link
    This study investigates the ossicular motion produced by bone-conducted (BC) sound in live human ears. Laser Doppler Vibrometry was used to measure air conduction (AC)- and BC-induced umbo velocity (V(U)) in both ears of 10 subjects, 20 ears total. Sound pressure in the ear canal (P(EC)) was measured simultaneously. For air conduction, V(U) at standard hearing threshold level was calculated. For BC, ΔV was defined as the difference between V(U) and the tympanic ring velocity (an estimate of the skull velocity measured in the ear canal). ΔV and P(EC) at BC standard hearing threshold were calculated. ΔV at standard BC threshold was significantly smaller than V(U) at standard AC threshold between 500 Hz and 2000 Hz. Ear canal pressure at BC threshold tended to be smaller than for AC below 3000 Hz (with significant differences at 1000 Hz and 2000 Hz). Our results are most consistent with inertia of the ossicles and cochlear fluid driving BC hearing below 500 Hz, but with other mechanisms playing a significant role at higher frequencies. Sound radiated into the external ear canal might contribute to BC hearing at 3000 Hz and above
    corecore